Steel Surface Defect Classification Using Deep Residual Neural Network
نویسندگان
چکیده
منابع مشابه
Textile Defect Classification Using Neural Network
The global market for textile industry is highly competitive nowadays. Quality control in production process in textile industry has been a key factor for retaining existence in such competitive market. Automated textile inspection systems are very useful in this respect, because manual inspection is time consuming and not accurate enough. Hence, automated textile inspection systems have been d...
متن کاملDistinguishing Feature Selection for Fabric Defect Classification Using Neural Network
Over the years significant research has been performed for machine vision based fabric inspection systems in order to replace manual inspection, which is time consuming and not accurate enough. Automated fabric inspection systems mainly involve two challenging problems: one is defect detection and another is classification, which remains elusive despite considerable research effort in automated...
متن کاملRelation Classification via Convolutional Deep Neural Network
The state-of-the-art methods used for relation classification are primarily based on statistical machine learning, and their performance strongly depends on the quality of the extracted features. The extracted features are often derived from the output of pre-existing natural language processing (NLP) systems, which leads to the propagation of the errors in the existing tools and hinders the pe...
متن کاملPrivacy-Preserving Classification on Deep Neural Network
Neural Networks (NN) are today increasingly used in Machine Learning where they have become deeper and deeper to accurately model or classify high-level abstractions of data. Their development however also gives rise to important data privacy risks. This observation motives Microsoft researchers to propose a framework, called Cryptonets. The core idea is to combine simplifications of the NN wit...
متن کاملDeep Neural Network Architectures for Modulation Classification
In this work, we investigate the value of employing deep learning for the task of wireless signal modulation recognition. Recently in [1], a framework has been introduced by generating a dataset using GNU radio that mimics the imperfections in a real wireless channel, and uses 11 different modulation types. Further, a convolutional neural network (CNN) architecture was developed and shown to de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Metals
سال: 2020
ISSN: 2075-4701
DOI: 10.3390/met10060846